
MUDdL to MUdDlE 
 

designing a scripting language for mmos 
 

6th December, 2017 
Games hub 

 
Prof. Richard A. Bartle 
University of esSEx 



introduction 

• I decided to put some slides together for 
this talk so i’d look professional 

– Even though i’m not being paid to speak... 

• As this is being organised by the games 
hub here at essex university, i thought i’d 
talk about something that came out of 
the university back in the day 

• I was a student here, and i used to run 
the computer society 
– As secretary and as chairman 

 



evidence 

• Here’s my membership card from 1981/82: 
 
 
 
 
 

• Note: we called ourselves compsoc, with 
only a vague idea of whether the comp 
was computer or computing... 



Roy trubshaw 

• When i arrived at essex university in 1978, 
the secretary of compsoc was roy 
trubshaw 

• This is roy reading a manual 
– The best                         
programmers read                    
manuals for fun! 

• Those machines                             
behind him are                           
teletypes 



facilities 

• Here are the state-of-the-art facilities 
we had back then: 
 



architecture 

• ALl of what is now lab 1 was occupied by 
the decsystem 10 mainframe 
– Including its disc drives, magnetic tape drives, 
dectape drives, pdp-11 front ends, console, more 
lineprinters, plus 27 more co2 cylinders than 
were needed to flood the room 

• The dec-10 (or pdp-10) was the 
primary scientific computer of its era 
– So much better than the ibm 360 

• It had a BeautifuLly-designed 
instruction set and architecture 



motivation 

• reading through the manuals, roy came 
across the idea of inter-process 
communication 

• Tops-10, the dec-10 operating system, had 
a way to send blocks of information 
between processes 
– 1 block = 1 page = 512 words 
– 1 word = 36 bits 

• He wanted to play with this, but it 
needed system privileges he didn’t have 
– The total number of ipc blocks was limited 



High and low 

• The dec-1o’s 218 words of memory was 
organised as two segments 
– Named for the leftmost bit of an address 

• The high segment was shared and 
write-protected 
– Used for code, so if 20 people were using 
the same editor there would only be one 
copy of it in memory 

• The low segment was non-shared but 
writeable 
– Used for process-specific data such as text 



setuwp 

• Roy decided to write his own ipc library 
• Looking through a manual to find 
something that let him do it, he came 
across this: 
 
 
 

• Setuwp – set user write protect 
– Allows the user to make the high segment 
writeable while remaining shared! 

 



mud 

• Roy immediately saw that this was far 
more powerful than what simple ipc 
meSsage-passing offered 

• You could use it to share data and 
share data structures 
– You didn’t need to pass data – everything 
was already there! 

• So, what did roy do to test his idea? 
• Well, he wrote a program called mud 

– Multi-user dungeon 

• This was circa 20th october, 1978 



dungeon 

• The d in mud was for dungeon 
• Dungeon (actually dungen) was a fortran 
transliteration of zork 
– Roy had played this at mit over what would 
become the internet 

• zork was much better than advent and 
haunt, its competitors, so roy thought the 
genre would be called dungeons 
– In this sense, mud was a multi-user dungeon 

• Unfortunately It actually came to be 
called adventures, as advent was first... 



advent 

• This is what advent looked like: 
 
 
 
 
 
 
 

•                             (image from                                 
         wikipedia) 



advent 

• Advent, aka colossal cave, was one of the 
very few games available at the time 
– When computers cost miLlions, games are 
seen as a waste of resources 

– Sometimes, advent was removed so essex 
students couldn’t play during busy periods 

• Students couldn’t access advent’s source 
code as they might then compile it and 
have their own version 

• However, roy systematically went through 
decus dectapes until he found it... 



commands 

• The way text adventures work, players 
type comMands which are then 
executed 
– computers aLl had command-line interfaces 
back then, so this was well understOod 

• you have to parse what users type so 
you can associate their commands with 
your code 

• You’re basically looking for a function 
and its parameters 
– A verb and the nouns to apply it to 



formats 

• Advent had two formats for commands; 
roy added a third for mud: 
– <Verb> 

• eg. quit 

– <Verb> <noun> 
• eg. get sword 

– <Verb> <noun> <preposition> <noun> 
• eg. open door with key 

• The parser i would Later write for mud2 
was far more sophisticated, but it stiLl 
reduced to find-a-function-and-parameters 



Hard-coding 

• The reason roy wanted to look at the code 
for advent was to find out what was data 

• Version 1 of mud was just a shared-
memory test that it took about 2 hours 
to write 
– The vocabulary and commands were hard-
coded into it 

• Roy started work on Version 2 
straight away but had to decide how to 
add what we’d now call content 

• Hard-coding it in macro-10 was tedious 



Meta-language 

• His solution was a bOotstrap 
approach 

• He would hard-code into mud a set of 
commands that could be used to add new 
commands from within mud itself 

• If you wanted to create a creature, for 
example, you’d run mud and issue a 
command something like create ox 
– It would add the new ox object to the data 
structures 

– Indeed, This is what I did in november 1978 

 



problems 

• There were several problems with this 
• 1) it was meSsy to parse meta-
commands to add new player-commands 

• 2) you had to save (“dump”) the database 
periodically to comMit your work, but 
had to dump aLl of it, not just new bits 
– including player characters..! 

• 3) programming a game the size of mud in 
an aSsembly language is a grind 

• In late 1979, Roy decided to discard 
version 2 and write version 3 in bcpl 



mud 

• Here’s a printout of a 1980 mud log... 

 



mud1 

• Version 3 of mud became known as 
mud1, to distinguish it from the genre 
that took its name 

• Roy now knew that adding content to mud 
from within mud itself was a bad idea 
– Although the concept was later rediscovered 
and used by tinymud 

• It would be betTer to design a definition 
language to specify mud commands 
– This is why roy looked at advent’s code – to 
see how advent did it 



mix 

• Advent used an inelegant mixture of 
hard code and soft code for its content 

• Nevertheless, roy based some of his own 
language on parts of it 
– Particularly the travel table 

• He called his language mudDl – the 
mud definition language 
– He knew The one for zork was called mdl, 
so this was a nod in its direction 

– Also, roy had been nicknamed truBbl by the 
computer service staff at essex... 



compilation 

• The idea was that you wrote the bulk of 
the game in muddl, which was then 
compiled into macro-10 
– He called his compiler dbase 

• You asSembled this macro-10 and 
loaded it into the shared high segment 
along with the compiled bcpl 

• You could then run the game and the data 
structures representing the muddl 
would be all set 
– Assuming you lined the addresses up right 



muddl 

• So, let’s loOk at muddl 
• A muddl program was divided into several 
sections, each with its own syntax 

• The main sections were: 
– Rooms 
– Vocabulary 
– Objects 
– Travel table 
– Actions 
– Text 

• I later added more for mobiles, daemons etc. 



rooms 

• Rooms had a name, some properties, a 
short description and a long description 

• Here’s the start location: 
 
 
 

• Rooms could share long and/or short 
descriptions to save memory 
– Eg. %nhill1 to use nhill1’s description 

• Mud1 had about 400 rooms – quite big! 
 

start light startrm 

 Narrow road between lands. 

 You are stood on a narrow road between The Land and whence you came. 

 To the north and south are the small foothills of a pair of majestic 

 mountains, with a large wall running round. To the west the road 

 continues, where in the distance you can see a thatched cottage opposite 

 an ancient cemetery. The way out is to the east, where a shroud of 

 mist covers the secret pass by which you entered The Land. 



vocabulary 

• The vocabulary section stated what 
words mud would accept 

• It started off with claSses 
– These were not proper classes... 

• Every object had to have a class, but 
classes couldn’t have subclasses 
– So most classes had just one object 

• The vocabulary also listed the objects, 
but included some properties for those 
objects 
– That’s Not a vocabulary thing!  



Vocabulary objects 

• Here’s what the vocabulary entries for 
objects loOked like: 
 
 
 

• Object, class, weight in grams, value 
in points 

• The vocabulary also had a synonyms 
subsection, where you could say eg. that 
brolly pointed at the umbrella object 

 chain links 4000 40 

 mosaic chip 10 5 

 stove oven 0 0 

 trophy triumph 1000 35 

 throne chair 60000 200 

 forge flame 0 0 

 poker prod 3000 20 

 icicle ice 1000 0 

 pot container 2000 0 



objects 

• muddl starts to get complicated when 
it comes to objects 

• Objects in mud1 had different states 
known as properties 
– They also had other, binary properties... 

• Here’s a relatively simple object definition: 
 

• The longsword starts in sea14, with initial 
property 1, max property 1, value property 
2 (so not worth points), it glows in the 
dark and blocks summon spells 

longsword sea14 1 1 2 bright nosummon 

0 A murderous, blood-stained longsword lies here. 

1 Thrust deep into a rock is a murderous longsword! 



Not so simple 

• Here’s the broadsword definition: 
 

• This starts in a random place and has a 
random initial state, but it’s worth points 
in state 0 

• Here’s a mobile object (a “mobile”): 
 
 

• Gawd knows what those extra numbers 
mean... 
 

broadsword <cove ifrst2 rost> 1 -1 0 bright nosummon 

0 A marvellous broadsword lies shining in front of you! 

1 A fearsome broadsword lies in front of you, a marvel to behold! 

dwarf 3 0 6 dwpst1 0 1 0 15 

 noget contains 15000 transparent opened disguised 

0 A stocky dwarf eyes you up and down with suspicion. 

1 A dwarf sleeps here. 



Travel table 

• The travel table handles movement commands: 

 
 
 
 

• The first column contains conditions 
– none, “if you’re carrying one of these”, “if you’re not 

carrying one of these”, a message-plus-move, a 
message-but-no-move 

• The second column is where you go 
• The rest are the directions this line is for 

 

nfrst4 n nfrst1 e o 

 n clffst swamp sw 

 n wfrst1 s 

 n nfrst3 se 

 beast 474 jump 

 wood 0 jump 

 ~parachute beach jump 

 -13 jump 

 n fslop1 ne 

 n fslop3 n 

 51 nw 

 52 w 



actions 

• Action definitions are the most complicated 
components of muddl: 

 
• So, killer is the class for longsword... 
• The basic format is: verb subject object 

condition parameter true false 
– The .get is the hard-wired get function 

• Translation (all these are for get longsword): 
– If the longsword is in property 0, just pick it up 
– Otherwise, if you’re not level 5 print message 1049 
– Otherwise, set its property to 0, print message 1021 

and then pick it up 

 

 get .get killer none ifprop null 0 0 

 get killer none unlesslevel null 5 1049 

 get .get killer none set null 0 1021 



text 

• To find out what a message was in 
english, you looked at the text section: 
 

• As you can see, these messages are fixed, 
not dynamic 
– Muddl couldn’t look at your gender on the fly 
and decide whether to use superhero or 
superheroine as appropriate 

• Yes, that number is corRect, and there 
were over 1,100 such command responses 
in mud1 

1049 You manage to budge the sword a little way, but you're not experienced 

 enough to dislodge it yet. Maybe if you made it to superhero or 

 superheroine you'd be able to? 



limits 

• Although muddl was powerful, it 
wasn’t powerful enough 

• The action format didn’t allow for lOops 
or multiple tests 

• The special commands such as .get had 
to be hard-coded in, which Put pressure on 
the memory available for other code 
– And Undermined the point of having a 
definition language in the first place 

• We had 99 special functions by the end of 
mud1, but that’s not what led to mud2... 



repetition 

• This is what finally did for muddl: 
 feed nanny pan null null 681 0 

 feed nanny victuals destroy second 682 0 

 feed nanny antidote destroy second 682 0 

 feed nanny flower destroy second 682 0 

 feed nanny fungus destroydestroy toadstool 683 0 

 feed nanny limb null null 684 0 

 feed nanny corpse null null 684 0 

 feed nanny sprig destroydestroy mistletoe 685 0 

 feed nanny frog null null 684 0 

 feed nanny bird null null 684 0 

 feed nanny birdofprey null null 684 0 

 feed nanny rodents null null 684 0 

 feed nanny bunny null null 684 0 

 feed nanny vermin null null 684 0 

 feed nanny familiar null null 684 0 

 feed nanny herring destroy second 682 0 

 feed nanny serpent null null 684 0 

 feed nanny nut destroy second 682 0 

 feed nanny pen destroy second 682 0 

 feed nanny parachute destroy second 682 0 

 feed nanny money destroy second 682 0 

 feed nanny gem destroy second 682 0 

 feed nanny liquid destroy second 682 0 

 feed nanny rum null null 930 0 

 feed nanny medication destroy second 682 0 

 feed nanny paper destroy second 682 0 

 feed nanny map destroy second 682 0 

 feed nanny tome destroy second 682 0 

 feed nanny adventurer null null 1094 0 

 feed nanny book destroy second 682 0 

 feed nanny biscuit destroy second 682 0 



mud2 

• In order to escape this limitation, i 
decided to rewrite mud from scratch 
– Version 4, which became known as mud2 

• At the core of it would have to be a new 
definition language 
– Which i called muDdle 
– Multi-user dungeon definition language 

• I have two exercise books full of notes 
on the design of muddle 

• It’s a fully-fledged programming language 
– You could write a muddle compiler in muddle 



separation 

• Muddle separated the vocabulary from 
the prograMming objects: 
 
 

• This says that there’s a word, eye, 
which when it’s used as a noun refers 
to the atom ruby1 and when it’s a 
verb refers to the atom eye 
– The :: means it’s a one-way link, so ruby1 
doesn’t know that eye is a synonym for it 

$[ eye 

 noun:: ruby1 

 verb: eye 

$] 



parsing 

• I’m not going to describe mud2’s parsing 
in detail, but it was very strong 
– pick up all the gems except the green 

one and put them in the smallest box 

• the (hard-wired) parser gave the muddle 
interpreter a series of commands  

• Commands were lists of 1, 2 or 3 atoms 
– Or strings, for eg. tell commands 

• These lists of atoms were pattern-matched 
against definitions written in muddle 

• This is where it gets interesting... 
 



patterns 

• Muddle code is associated with patTerns: 
 
 

• These are the function and 
parameters that come from commands 

• Important: those atoms there 
represent clasSes 
– { get longsword room }: means get any 
object of type longsword from any object of 
type room 

• Insight: The atoms are the classes 
 

{ get longsword }: 

{ get longsword room }: 

{ get longsword loosener }: 

{ get longsword creature }: 

{ get longsword container }: 



classes 

• In a language such as c++ or java, classes 
are templates for stamping out 
object instances 

• In muddle, objects and classes are just 
atoms 
– An object is merely an atom with no children 

• You could, if you liked, hold the concept 
of a longsword, rather than a particular 
longsword 
– Although it was mainly used for commands 
such as enumerate treasure 



hierarchy 

• Furthermore, muddle classes can have 
multiple parents 
 
 
 
 

• here, the longsword is both sword and 
undamageable 

• Sword is itself metal, weapon, treasure 
and loosener 

longsword: 

*+ [sword, undamageable] 

 desc: 

  loose(first) ->> 

   "A murderous longsword glints ahead of you. ", 

   "Thrust deep into a rock is a murderous longsword! " 

 strength: muser(outside(first) 'o') | spellproof(o) ->> 30, 60 

 loose: \\ 

 prop: \\ 

 luminescent: // 

+* 



matching 

• When you match a comMand to a 
patTern, you match the most left-to-
right specific 

• Rooms and creatures are both containers, 
so the room and creature classes are 
more specific than the container class 
– get ls f here will match { get 
longsword room } before { get longsword 
container } 

– get ls from box will match { get 
longsword container }  



tangled 

• Mud2’s object hierarchy was something 
like 14 levels deep and had thousands 
of atoms in it 

• Some atoms had 50+ children 
– Translation: some classes had 50+ subclasses 

• You might think this would be a horrible 
tangle you could never keep track of 

• You’d be right – it was! 
• However, you didn’t nEed to understand it 
• It handled the tangled mess for you 
 



code 

• The code associated with patterns loOks 
like normal code: 
 
 
 
 
 
 

• All the function calls in there also use 
the pattern-matching system 

{ get longsword room }: 

(second=outside(me) | checkwiz()) &  

$( the%(first) 'df' 

 loose(first) ->> get%(first, second), 

 muser(me) ->> 

  !! ("You can't seem to dislodge " + df + ", it won't budge.*N"), 

 prop(first) ->> 

 $( checkcanhold(first) 

  loose(first):= // 

  !! ("You easily withdraw " + df + " from the rock.*N") 

  get%(first, second) 

 $), 

 $( !! ("You take hold of " + df + " but its magical powers have* 

faded, and it disintegrates in your hand.*N") 

  destroy%(first) 

 $) 

$) 



use 

• Muddle is a very easy language to 
program in 
– You can program creatively 

• There’s even a muddle-t0-c compiler! 
• Unfortunately, it’s so bound up with 
the mud2 run-time system that you can 
only use it to write text muds 
– It can’t be compiled-and-linked in pieces 

• It’s also got some crufty bits i added 
on later that look an awful lot like 
feature crEep.. 



clear 

• I’ve designed a general purpose language to 
replace muddle that I call Clear 

• it’s very cut down 
– It doesn’t even have integers built-in! 

• I started writing an interpreter a 
couple of years ago, but got bogged down 
doing its macro-processing 
– Plus there are too many games I want to 
play 

• One day maybe 



conclusion 

• Playing with computer game design for fun 
can be more than just fun 
– A multi-bilLion pound/dollar/euro/yuan 
industry came out of roy’s and my fun! 

• Computers today are not as they once 
were, but creativity is 

• If you want to code something for fun, 
code it for fun! 

• Then, 35 years from now, it could be 
you here boring games hub members about 
“computers the size of shoe boxes”! 


