
MUDdL to MUdDlE
designing a (scripting?) language for mmos

8th May, 2018
Code Europe

Prof. Richard A. Bartle
University of esSEx, UK

introduction

• So, this talk concerns the historical
evolution of a programMing language
none of you have heard of
– MUDdle

• Its purpose is to make some wider
points about language design and use
– At least for creative projects

• However, it also shines a light on how
game development was in the old days
– So may be of interest to historians…

mud

• The game I’ll be talking about is mud
– “Multi-user dungeon”

• Almost aLl modern mmorpgs are direct
descendants of mud
– Including those developed in korea and
china

• Mud was written by roy Trubshaw and
richard bartle (me!), in 1978
– Roy initiated it; I became involved a few weeks
afterwards

• This year is its 40th anniversary

screen

• This is what mud loOked like … sort of
Narrow road between lands.

You are stood on a narrow road between The Land and whence you came.

To the north and south are the small foothills of a pair of majestic

mountains, with a large wall running round. To the west the road

continues, where in the distance you can see a thatched cottage

opposite an ancient cemetery. The way out is to the east, where a

shroud of mist covers the secret pass by which you entered The

Land. It is raining.

*w

Narrow road.

You are on a narrow east-west road with a forest to the north and

gorse scrub to the south. It is raining. A splendid necklace lies

on the ground.

*

• It’s a mock-up of a screen, because back
in 1978 we had no screEns

• We used teletypes

log

• Here’s a printout of a 1980 mud log...

architecture

• Mud was a textual world
– Mmorpgs were originaLly called “graphical
muds”

• It was written on a room-sized computer,
The dec-10 (or pdp-10)
– the primary scientific computer of its era
– So much better than the ibm 360

• The dec-10 had a BeautifuLly-designed
instruction set and architecture
– sadly, Its 18-bit address space, which seemed
large at the time, wasn’t

motivation

• I won’t explain the reasons that roy
and I developed mud, because that would
be a talk all by itself
– As indeed it is:
http://www.gdcvault.com/play/1013804/MUD-
Messrs-Bartle-and-Trubshaw

• I’m going to discuss how mud was
implemented

• Development went through four stages:
– Mud version 1, mud version 2, mud version 3
(“mud1”), mud version 4 (“Mud2”)

http://www.gdcvault.com/play/1013804/MUD-Messrs-Bartle-and-Trubshaw

Version 1

• Mud version 1 was only a test program
to make sure that inter-player
comMunication worked

• Mud processes coMmunicated
through shared, writeable memory
– not client/server, unless you count dumb
terminals as clients

• It was written in two hours or so
using macro-10 asSembler

• the proof of concept worked, so roy
immediately started on version 2

Version 2

• Mud version 2 took several weeks to
reach a point where it was playable

• it was also written in macro-10
• The code itself was compact and clean,
but the problem was content

• It wasn’t called content back then, of
course, as the term hadn’t been invented
– We’d say there “wasn’t much there”, or
there “wasn’t much to do”

• We had an engine, but not a lot of fuel
for the engine to run on

Adding content

• In version 1, content was hard-coded
– There was hardly any and it was
throwaway code, so this made sense

• In version 2, content had to be adDed
• Computer interfaces back then used a
command line

• Hmm! Mud players issued their instructions
to the game as commands
– N, get key, e, open door with key, …

• Roy therefore added player commands to
add game content

Meta-language

• His solution was basically a bOotstrap
approach

• He hard-coded into mud a set of
commands that could be used to add new
commands from within mud itself

• If you wanted to create a creature, for
example, you’d run mud and issue a
command something like create ox
– It would add the new ox object to the data
structures

– other commands could then modify it

success

• This worked, but it had problems
• Content was hard to edit and remove

– And even hard to list

• As more command types were adDed, the
code to process them became biGger
– So big that it impacted on memory use
– Code and data shared the same memory segment

• Also, writing in assembler was slow
• In 1979, Roy therefore decided to rewrite
mud from scratch again as version 3

Version 3

• Roy’s main aims for version 3 were:
– to write in a better language than macro-10
– to move content-creation outside the game

• The better language was bcpl, The fore-
runner of c
– A wonderful, typeless systems-
programming language, I love it!

• He created a data file for content
• he wrote a program to compile the data
file into macro-10, which was then
asSembled and loaded into mud

gone

• With command-line parsing of content-
creation gone, roy was free to use less
English-like syntax for content
– Command-line content-creation was later
reinvented for social muds (eg. tinymud)

• He designed a language for defining mud
content, which he called mudDl
– “multi-user dungeon definition language”
– The name was a conscious nod to mdl, which
was used for zork

• So how did he go about doing that?

advent

• roy did the same thing programmers
always do in such circumstances: look
to see how other people did it!

• Problem: there were no other muds he
knew of! Mud was the first!
– avatar and sceptre of goth did exist by then,
but none of us knew of the other two

• Roy looked at the single-player game,
colossal cave, known to us as advent

• He based some of mudDl on advent’s
(hard-coded) data structures

sections

• Muddl was split into several sections,
the main ones being:
– Rooms
– vocabulary

• Classes
• Objects
• actions

– Travel
– Text

• From our perspective, the vocabulary
section is the most interesting

vocabulary

• The vocabulary listed the words that the
players could use and definitions of
those words

• Roy had a two-level structure for
nouns

• “Classes” were colLections of “objects”
• “objects” were actual game tokens
• Classes weren’t proper classes as we’d
understand them today
– All objects had to have a class, but no class
could have subclaSses

Vocabulary objects

• Here’s what the vocabulary entries for
objects loOked like:

• Object, class, weight in grams, value
in points
– Note that these numbers aren’t really what
you’d call “vocabulary” items

• Most classes only had one object in them
– Although sword there has two

chain links 4000 40

mosaic chip 10 5

stove oven 0 0

trophy triumph 1000 35

throne chair 60000 200

forge flame 0 0

longsword killer 2250 0

broadsword sword 2250 163

sabre sword 2250 0

objects

• muddl starts to get complicated when
it comes to object definitions

• Objects in mud version 3 had different
states known as properties
– They also had other, binary properties...

• Here’s a relatively simple object definition:

• The longsword starts in sea14, with initial
property 1, max property 1, value property
2 (so not worth points), it glows in the
dark and blocks summon spells

longsword sea14 1 1 2 bright nosummon

0 A murderous, blood-stained longsword lies here.

1 Thrust deep into a rock is a murderous longsword!

formats

• Advent had two formats for commands;
roy had added a third for mud:
– <Verb>

• eg. quit

– <Verb> <noun>
• eg. get sword

– <Verb> <noun> <preposition> <noun>
• eg. open door with key

• AlL game command interfaces (even
graphical ones) essentially reduce to
find-a-function-and-parameters

actions

• Action definitions are the most complicated
components of muddl:

• So, killer is the class for longsword...
• The basic format is: verb subject object

condition parameter true false
– The .get is a hard-wired get function

• Translation (all these are for get longsword):
– If the longsword is in property 0, just pick it up
– Otherwise, if you’re not level 5 print message 1049
– Otherwise, set its property to 0, print message 1021

and then pick it up

get .get killer none ifprop null 0 0

get killer none unlesslevel null 5 1049

get .get killer none set null 0 1021

limits

• Although muddl was powerful, it
wasn’t powerful enough

• its action format didn’t allow for
lOops or multiple tests

• The special commands such as .get had
to be hard-coded in, which Put pressure on
the memory available for other code
– And Undermined the point of having a
definition language in the first place

• We had 99 special functions by the end of
v3, but that’s not what led to v4…

repetition

• This is what finally did for muddl:
feed nanny pan null null 681 0

feed nanny victuals destroy second 682 0

feed nanny antidote destroy second 682 0

feed nanny flower destroy second 682 0

feed nanny fungus destroydestroy toadstool 683 0

feed nanny limb null null 684 0

feed nanny corpse null null 684 0

feed nanny sprig destroydestroy mistletoe 685 0

feed nanny frog null null 684 0

feed nanny bird null null 684 0

feed nanny birdofprey null null 684 0

feed nanny rodents null null 684 0

feed nanny bunny null null 684 0

feed nanny vermin null null 684 0

feed nanny familiar null null 684 0

feed nanny herring destroy second 682 0

feed nanny serpent null null 684 0

feed nanny nut destroy second 682 0

feed nanny pen destroy second 682 0

feed nanny parachute destroy second 682 0

feed nanny money destroy second 682 0

feed nanny gem destroy second 682 0

feed nanny liquid destroy second 682 0

feed nanny rum null null 930 0

feed nanny medication destroy second 682 0

feed nanny paper destroy second 682 0

feed nanny map destroy second 682 0

feed nanny tome destroy second 682 0

feed nanny adventurer null null 1094 0

feed nanny book destroy second 682 0

feed nanny biscuit destroy second 682 0

Version 4

• In order to escape this limitation, i
decided to rewrite mud from scratch
– Version 4, which became known as mud2

• At the core of it would have to be a new
definition language
– Which i called muDdle
– Multi-user dungeon definition language

• I have two exercise books full of notes
on the design of muddle

• It’s a fully-fledged programming language
– You can write a muddle compiler in muddle

separation

• Muddle separated the vocabulary from
the prograMming objects:

• This says that there’s a word, eye,
which when it’s used as a noun refers
to the atom ruby1 and when it’s a
verb refers to the atom eye
– The :: means it’s a one-way link, so ruby1
doesn’t know that eye is a synonym for it

– ruby1 is a game token (a particular ruby)

$[eye

noun:: ruby1

verb: eye

$]

parsing

• I’m not going to describe mud2’s parsing
in detail, but it was very strong
– pick up all the gems except the green

one and put them in the smallest box

• the (hard-wired) parser gave the muddle
interpreter a series of commands

• Commands were lists of 1, 2 or 3 atoms
– Or strings, for eg. tell commands

• These lists of atoms were pattern-matched
against definitions written in muddle

• This is where it gets interesting...

patterns

• Muddle code is associated with patTerns:

• These patterns match the functions and
parameters that come from commands

• Important: all those atoms there
represent clasSes
– { get longsword room }: matches any
command of type get applied to any object of
type longsword and any object of type room

• Insight: The atoms are the classes

{ get longsword }:

{ get longsword room }:

{ get longsword loosener }:

{ get longsword creature }:

{ get longsword container }:

classes

• In a language such as c++ or java, classes
are templates for stamping out
object instances

• In muddle, objects and classes are just
atoms
– An object is merely an atom with no children

• You could, if you liked, allow players to
hold the concept of a longsword, rather
than some particular longsword
– Although classes-as-concepts are mainly used
for commands such as enumerate treasure

hierarchy

• Furthermore, muddle classes can have
multiple parents

• here, the longsword is both sword

and undamageable

• Sword (defined elsewhere) is itself metal,
weapon, treasure and loosener

longsword:

*+ [sword, undamageable]

desc:

loose(first) ->>

"A murderous longsword glints ahead of you. ",

"Thrust deep into a rock is a murderous longsword! "

strength: muser(outside(first) 'o') | spellproof(o) ->> 30, 60

loose: \\

prop: \\

luminescent: //

+*

matching

• When you match a comMand to a
patTern, you match the most left-to-
right specific

• For example, Rooms and creatures are both
containers

• the room and creature classes are thus
more specific than the container class
– get ls f here will match { get
longsword room } before { get longsword
container }

– get ls from box will only match { get
longsword container }

tangled

• Mud2’s object hierarchy was something
like 14 levels deep and had thousands
of atoms in it

• Some atoms had 50+ children
– Translation: some classes had 50+ subclasses

• You might think this would be a horrible
tangle you could never keep track of

• You’d be right – it was!
• However, you didn’t nEed to understand it
• It handled the tangled mess for you

code

• The code associated with patterns loOks
like normal code:

• ALl the function calls in there also use
the pattern-matching system

{ get longsword room }:

(second=outside(me) | checkwiz()) &

$(the%(first) 'df'

loose(first) ->> get%(first, second),

muser(me) ->>

!! ("You can't seem to dislodge " + df + ", it won't budge.*N"),

prop(first) ->>

$(checkcanhold(first)

loose(first):= //

!! ("You easily withdraw " + df + " from the rock.*N")

get%(first, second)

$),

$(!! ("You take hold of " + df + " but its magical powers have*

faded, and it disintegrates in your hand.*N")

destroy%(first)

$)

$)

Diamond problem

• Here’s a single-inheritance atom hierarchy

• If we define
– { value treasure }: 100

– { value gold }: 200

• Then the penny has a value of 100 and the ingot
has a value of 200

• Try get penny, get coin and get treasure

Gold

Penny Ingot

Coin

Treasure

Multiple inheritance

• What happens if you have something that is both
a coin and an item of gold?

• get gold and get coin are now impresSive

• However, suppose we define
– { value gold }: 200

– { value coin }: 50

• What’s the value of the sovereign?

Gold

Penny Sovereign Ingot

Coin

Treasure

answer

• The answer is that it doesn’t maTter!
• So long as the pattern-matcher returns the
same answer every time you use it,
it’s ok
– So basically, if you stop when you find the
first match, you’re fine

• It genuinely is ambiguous – so embrace
that ambiguity!

• Muddle, like bcpl before it, trusts the
programmer

methods

• Almost alL virtual worlds associate
functionality (“methods”) with game objects
– Works for single-parameter commands
– Problems for multi-parameter
commands

– “touch candle with match”

• Solution: make verbs be the
programming objects, not nouns
– { touch combustible combustible }:

• Most just hack it, C++ or Java style…

Code and data

• The general point I want to make
concerns code and data

• What’s the difFerence?
• Mud version 1 hard-coded its content
• Version 2 soft-coded it
• Version 3 compiled data-definition files into
asSembler

• Version 4 converted data-definition files
into code for a virtual machine

• Scripts are data presented as code?

continuum

• You start out hard-coding data, then
you move it out to files for flexibility

• The more control you move out to files,
the more your data looks like a script

• The more power your scripts have, the
more you create a stand-alone language

• If you take this the whole way, you end
up with everything in the script and
your original code is an interpreter

• But … your data is now hard-coded
in the scripting language!

Hack or refactor

• This is a general problem with
programming

• Do you hack a solution, or do you
refactor everything?

• It makes sense to do one or the other
• It makes no sense to do anything in
between
– Your only legitimate justification is that
you weren’t given enough time to do a
proper job

conclusion

• Code and data are the same thing
• Code is merely data for other code
or for hardware

• Playing with computer game design for
fun can be more than just fun
– A multi-bilLion pound/dollar/euro/yuan
industry came out of roy’s and my fun!

• Computers today are not as they once
were, but creativity is

• If you want to code something for fun,
code it for fun!

