
1

Real-Time Massively
Multiplayer Games

Dr Richard A. Bartle
Visiting Fellow

11th December, 2002

Introduction
• Games

– Things you play, supposedly for fun

• Multiplayer Games
– Capable of having at least 2 players at once

– But actual number may vary (could even be 0)

• Massively Multi-player Games
– Having > n players at once
– n is (currently) 128

• Whatever it takes to rule out LAN games…

– These games are computer-moderated

• Real-Time Massively Multiplayer Games
– Games with a response time of < 4 seconds

• Whatever it takes to rule out WWW and email games

2

In practice…
• Role-playing games

– E.g. EverQuest, Ultima Online, Dark Age of Camelot
– Hugely popular

• EverQuest has nearly 440,000 subscribers
• Lineage (Korea) has over a million

– Lots of clones in development

• First-person shooter wannabes
– E.g. World War II Online, Neocron

– Pedestrian by Counterstrike standards

• God games
– E.g. The Sims Online. Still in beta test…

– Not entirely clear what people will do in them

Gratuitous Screenshot

3

Architecture
• Uses a client/server approach
• All decisions are made by the server

– But newbie developers still don’t fully get it
– That’s all decisions, guys

• Clients are only given data the player needs to know
– In theory…

• Sadly, the client needs to know more
– E.g. what’s in the immediate locale
– So with a hack, the player finds out anyway
– Therefore provide it officially for them?

• Still opportunities to cheat
– Gamma correction for night sight

Overall Configuration

4

Shard Configuration

Notes
• Some connections vary in ways not shown

– Which I’m not going to show, either…

• Other (boring) parts of the system omitted
– Billing

– Customer service
• Deals with people, not characters

• “Log everything”?

– Statistics gathering

– Patch management

• Serious AI may require its own box
– Does it get access to the world database?

– Mobiles rather than bots

5

Why are Shards Clusters?
• Ideally, one computer runs the whole game

– This works for textual worlds already

• But for 250,000 players?
– Or for realistic physics?

– Or for passable AI?

– Plenty of ways remain to soak up CPU!

• Could buy a supercomputer
– But 8 machines of power p cost less than 1 of power 8*p

– And 64 machines of power p/8 degrade in efficiency
• So we’re told. No-one has actually tried it…

• So shards will be clusters for some time

Load Balancing
• How to ensure work is done equitably?
• Greatest source of load is player activity

– So assign incoming players to least loaded box?

• For each command, a server needs to:
– Lock all database records it may need

– Perform precondition tests

– Update data for effects
– Unlock the records

• This means heavy overheads
• Idea! Most commands are movement

– So partition load by virtual geography
– Don’t need to lock records if you own them

6

Two Approaches
• Fixed load balancing

– Each sub-server handles a set area
– Easy to implement

– Can partition world database local to sub-servers

– Allows client to pre-load texture maps

– Popularised by EverQuest and its zones

• Dynamic load balancing
– Each sub-server handles several smaller areas

– Over-used sub-servers pass control of an area to under-
used sub-servers

– Allows for seamless terrain

– Has no “physical” borders

– Popularised by Asheron’s Call

Designer Solutions
• Fixed load balancing is best 90% of the time

– Because of single-machine efficiencies

• However, it has major flash crowd problems
– 1,000 people in one zone? Oh-oh…

• Design of the game can address this though
– Dark Age of Camelot has 3 realms + borderlands

– Characters can’t enter other realms
– Therefore at most 1/3 of players per zone

• Also, use smaller zones, spread by geography
– No sub-server gets geographically adjacent zones

• DAoC players don’t notice zone transitions
• EQ players do (for 40 seconds or more)

7

Synchronisation
• Internet is laggy
• Predictive algorithms to handle this

– Smooth position changes to avoid warping
– So what you see on your screen may be wrong!

• Implies use of absolute co-ordinate frame
– Travel to a point, not travel “forward”

• But some actions are relative
– Shoot an arrow at someone
– You might not be where you think you are
– They might not be where you think they are

• Most designs target objects not places
– Arrow flights are not timed
– So arrows sometimes go through obstacles…

Conclusion
• Many of the problems with games occur in real world

situations too
• Tried-and-trusted solutions exist
• But game developers love re-inventing the wheel…
• Thoughtful designers can help alleviate the situation

– But most designers aren’t thoughtful…

• Great opportunity for non-game experts
• But it’ll take a while for developers to figure this out…

– Sorry, folks!

8

Added Extra 1

Added Extra 2

